Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomolecules ; 12(12)2022 12 15.
Article in English | MEDLINE | ID: covidwho-2163233

ABSTRACT

Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.


Subject(s)
Antineoplastic Agents , COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Ligands , Fluorescence Resonance Energy Transfer , DNA/chemistry , Antineoplastic Agents/chemistry , Zinc/chemistry , Copper/chemistry
2.
Bioinorg Chem Appl ; 2022: 6987806, 2022.
Article in English | MEDLINE | ID: covidwho-2162054

ABSTRACT

A new class of pharmacologically active mixed-ligand complexes (1a-2a) [MII(L)2 (bpy)], where L = 2-(4-morpholinobenzylideneamino)phenol), bpy = 2,2'-bipyridine, MII = Cu (1a), and Zn (2a), were assigned an octahedral geometry by analytical and spectral measurements. Gel electrophoresis showed that complex (1a) demonstrated the complete DNA cleavage mediated by H2O2. The overall DNA-binding constants observed from UV-vis, fluorometric, hydrodynamic, and electrochemical titrations were in the following sequence: (1a) > (2a) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is further supported by the biothermodynamic characteristics. The binding constant results of BSA by electronic absorption and fluorometric titration demonstrate that complex (1a) exhibits the highest binding effectiveness among others, which means that all compounds could interact with BSA through a static approach, additionally supported by FRET measurements. Density FunctionalTheory (DFT) and molecular docking calculations were relied on to unveil the electronic structure, reactivity, and interacting capability of all substances with DNA, BSA, and SARS-CoV-2 main protease (Mpro). These observed binding energies fell within the following ranges: -7.7 to -8.6, -7.2 to -10.2, and -6.7 to -8.2 kcal/mol, respectively. The higher reactivity of the complexes compared to free ligand is supported by the Frontier MolecularOrbital (FMO) theory. The in vitro antibacterial, cytotoxic, and radical scavenging characteristics revealed that complex (1a) has the best biological efficacy compared to others. This is encouraged because all experimental findings are closely correlated with the theoretical measurements.

3.
J Inorg Biochem ; 236: 111953, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1977520

ABSTRACT

A novel series of metal(II) complexes (1-5) [MII(L)2]{Where M = Cu (1), Co (2), Mn (3), Ni (4) and Zn (5)} constructed from 2-(4-morpholinobenzylideneamino)phenol Schiff base ligand (HL) in a 1:2 M ratio and the spectral and analytical results put forward square planar geometry. Spectro-electrochemical, hydrodynamic, gel electrophoresis, and DNA binding/cleavage results for all the compounds demonstrate that complex (1) had excellent DNA binding/cleavage properties compared to other compounds. The observation also suggests that test compounds could intercalate with DNA, and the biothermodynamic property more strongly supports the stabilizing of the double helix DNA with the complexes. BSA binding constant results show that complex (1) exposes the best binding property via a static mode, which is further confirmed by FRET calculations. The DFT calculations and docking results for all compounds towards DNA, BSA and SARS-CoV-19 main protease (3CLPro), reveal the binding energies were in the range of -7.8 to -9.4, -6.6 to -10.2 and - 6.1 - -8.2 kcal/mol for all test compounds respectively. In this case, complexes showed favorable binding energies compared to free ligand, which stimulates further studies aimed at validating the predicted activity as well as contributing to tackling the current and future viral pandemics. The in-vitro antioxidant, antimicrobial, and anticancer results for all compounds revealed that copper complex (1) has better activity compared to others. This might result in an effective anticancer drug for future research, which is especially promising since the observed experimental results for all cases were in close agreement with the theoretical calculations.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Coordination Complexes , Severe acute respiratory syndrome-related coronavirus , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , DNA/chemistry , DNA Cleavage , Ligands , Metals/chemistry , Molecular Docking Simulation , Morpholines/pharmacology , Peptide Hydrolases/metabolism , Phenols , Severe acute respiratory syndrome-related coronavirus/metabolism , Schiff Bases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL